ARTIKEL/TESTS / 3D-TLC: Crucial MX500 SSD 1 TB im Test

Crucial MX500 mit 1 TB

Die MX500 sieht ihr Einsatzgebiet unter anderem dort, wo alte HDDs ersetzt werden sollen.

Die MX500 sieht ihr Einsatzgebiet unter anderem dort, wo alte HDDs ersetzt werden sollen.

Crucial will die MX500 vor allem bei preisbewussten Käufern in den Fokus rücken, bietet aber dennoch auch einige Features für professionelle Anwender. Dazu zählt zum Beispiel die 256-Bit-AES-Verschlüsselung einschließlich Microsoft eDrive, IEEE-1667 und TCG Opal 2.0. Grundlegend setzt Crucial auf die Speichertechnologie des Mutterkonzerns Micron bzw. IMFT (Intel/Micron). Zum Einsatz kommt dabei 3D-TLC-NAND, der eine hohe Speicherdichte und damit ein sehr gutes Preis/Leistungs-Verhältnis ermöglichen soll. Als Herzstück der aktuellen MX-SSD-Generation fungiert ein Controller aus dem Hause SMI. Der Silicon Motion SM2258 ist ein 4-Kanal-Controller, der bei vielen Laufwerken in diesem Preissegment Anwendung findet und beispielsweise auch Power-Loss Protection und den DEVSLP-Stromsparmodus unterstützt. Unser Testmuster im 2,5-Zoll-Gehäuse kommt mit dem klassischen SATA-Interface, das in der Revision mit 6 Gbit/s zum Einsatz kommt. Auch bei der Version im M.2-Formfaktor handelt es sich um eine SSD mit SATA-Interface und nicht um eine NVMe-SSDs mit PCIe-Schnittstelle. Das bestätigen auch die technischen Eckdaten, die für beide Bauformen und bei allen erhältlichen Speichergrößen (siehe Seite 3) identisch sind.

TLC-Speicher erreicht naturgemäß nicht die Leistungsdaten von MLC oder gar SLC, weshalb die Hersteller entsprechende Techniken einsetzen, um die Performance auf ein vergleichbares Niveau anzuheben. Daher wird ein Pseudo-SLC-Cache verwendet, um die Geschwindigkeit von TLC-NAND zu erhöhen. Dabei wird ein Teil der TLC-Speicherzellen im SLC-Modus (1 statt 3 Bit) betrieben und damit als schneller Zwischenspeicher verwendet. Dadurch wird eine hohe Spitzenperformance bei Bursts erreicht, längere Schreibvorgänge lassen die Performance dann aber einbrechen, da der Zwischenspeicher zunächst zurückgeschrieben werden muss, was sonst in Zeiträumen ohne Schreiblast geschieht. Die Größe richtet sich dabei für gewöhnlich nach der Gesamtgröße des Drives. Bei der MX-Serie setzt Crucial allerdings nicht auf einen Cache mit fixer Größe, sondern allokiert diesen dynamisch. Die als „Dynamic Write Acceleration“ bezeichnete Technologie adaptiert die Cache-Größe nach dem freien, verfügbaren Speicherplatz auf der SSD. Mehr Details dazu gibt der Hersteller jedoch nicht bekannt. Flankiert wird der SMI-Controller von einem Gigabyte DDR3-Cache (8AP47 D9SHD).

Ein Blick auf das PCB samt Flash, DRAM-Cache und SMI-Controller.

Ein Blick auf das PCB samt Flash, DRAM-Cache und SMI-Controller.

Das 1-TB-Modell setzt auf sechzehn Chips vom Typ 8BA2D NW912 (MT29F512G08EEHAFJ4-3R:A), die gleichmäßig auf die Ober- und Unterseite des PCBs verteilt sind. Bei den NAND-Packages handelt es sich um IMFT 3D-TLC-NAND mit 64 gestapelten Lagen. Jeweils zwei NAND-Dies je Package sorgen für eine Kapazität von 512 Gbit (64 Gigabyte) pro Chip. Die resultierenden 1 TB Gesamtspeicher stehen dem Kunden jedoch nicht vollständig zur Verfügung, da ein separater Block für "Over-Provisioning" reserviert wird – dieser dient typischerweise dem Ausgleich defekter Speicherzellen und erhöht die Lebensdauer von Solid State Drives. Offiziell gibt Crucial die Speicherkapazität mit 1.000 Gigabyte an. Bezüglich der Zuverlässigkeit spezifiziert der Hersteller für unser Testexemplar bis zu 360 TBW (Terabytes Written), was umgerechnet rund 197 GB/Tag bei einer Garantiezeit von fünf Jahren entspricht. Dieser Wert skaliert allerdings abhängig vom Gesamtvolumen der SSD (siehe Tabelle auf Seite 3).

TRIM gehört ebenso zum Repertoire der MX500-Familie aus dem Hause Toshiba. Der TRIM-Befehl ermöglicht es einem Betriebssystem der SSD mitzuteilen, dass gelöschte oder anderweitig freigewordene Blöcke nicht mehr benutzt werden. Im Normalfall vermerkt das Betriebssystem in den Verwaltungsstrukturen des Dateisystems, dass die entsprechenden Bereiche wieder für neue Daten zur Verfügung stehen; der Controller des Solid-State-Laufwerks erhält diese Informationen in der Regel jedoch nicht. Durch den ATA-Befehl TRIM wird dem Laufwerk beim Löschen von Dateien mitgeteilt, dass es die davon betroffenen Blöcke als ungültig markieren kann, anstelle deren Daten weiter vorzuhalten. Die Inhalte werden nicht mehr weiter mitgeschrieben, wodurch die Schreibzugriffe auf das Laufwerk beschleunigt und zudem die Abnutzungseffekte verringert werden.

Crucial spendiert seinen SSDs natürlich auch ein passendes Tool zur Diagnose, Wartung und Aktualisierung der Firmware. Mithilfe des Crucial Storage Executive hat man alle wichtigen Informationen zum Drive stets im Überblick.

Autor: Stefan Boller, Yasin Lenzen
Western Digital WD My Passport 6 TB im Test
Western Digital WD My Passport 6 TB im Test
WD My Passport 6 TB

Mit der My Passport bietet Western Digital eine mobile externe Festplatte für den Alltag an, die obendrein auch Hardware-Verschlüsselung bietet. Wir haben uns das Exemplar mit 6 TB im Test angesehen.

SanDisk Desk Drive SSD 8 TB im Test
SanDisk Desk Drive SSD 8 TB im Test
SanDisk Desk Drive SSD 8 TB

Mit der Desk Drive Familie bietet SanDisk eine Komplettlösung für die Desktop-Datensicherung an. Die externen Speicher vereinen die Kapazität von HDDs mit der Geschwindigkeit von SSDs. Mehr dazu in unserem Test.

ASUS Hyper M.2 x16 Gen5 Card im Test
ASUS Hyper M.2 x16 Gen5 Card im Test
ASUS Hyper M.2 x16 Gen5 Card

Mit der Hyper-Erweiterungskarte bietet ASUS die Möglichkeit, auch ältere Mainboards auf satte vier M.2-Ports mit PCI Express 5.0 zu erweitern. Wir haben die Karte mit vier FireCuda 540 NVMe-SSDs von Seagate getestet.

Seagate FireCuda 520N SSD mit 1 TB im Test
Seagate FireCuda 520N SSD mit 1 TB im Test
FireCuda 520N SSD 1 TB

Mit der FireCuda 520N bietet Seagate eine Upgrade-SSD für Gaming-Handhelds wie Valve Steam Decks, ASUS ROG Ally, Lenovo Legion Go, Microsoft Surface und andere an. Wir haben die kompakte M.2 2230 SSD getestet.