ARTIKEL/TESTS / Sapphire Radeon R9 380 Nitro CrossFire

Technische Daten

Sapphire setzt bei der Radeon R9 380 Nitro auf eine eigene Kühlung.

Sapphire setzt bei der Radeon R9 380 Nitro auf eine eigene Kühlung.

Mit der Vorstellung der neuen Radeon R9 300 Familie schickt AMD einige Grafikchips in Rente. So auch beim Radeon R9 285, der durch die schnellere und optimierte Version R9 380 ersetzt wird. Als Basis dient wiederum die bekannte Tonga-GPU, die auf die GCN-Architektur-Version 1.2 setzt. Tonga benötigt eine Die-Fläche von 359 mm² und setzt auf ca. 5,0 Mrd. Transistoren auf. Partner TSMC ist wie gewohnt für die Fertigung der Chips, die in einem 28 nm Verfahren entstehen, zuständig. Die erstmals 2012 vorgestellte Graphics-Core-Next-Architektur (kurz GCN), die mittlerweile einige Verbesserungen erfahren hat, kommt nun in ihrer dritten Generation (1.2) zum Einsatz und soll Tonga unter anderem deutlich effizienter als seine Vorgänger-GPUs machen. Mit GCN verabschiedete sich AMD vom langjährigen VLIW-Design mit mehr-dimensionalen Shader-Einheiten und setzt stattdessen auf ein Mix aus Skalar- und Vektor-Einheiten, was Auslastung und Effizienz steigern soll.

Zwei Sapphire Radeon R9 380 Nitro im CrossFire-Setup.

Zwei Sapphire Radeon R9 380 Nitro im CrossFire-Setup.

Kurz zum Aufbau der neuen Tonga-GPU: Was bei Nvidia aktuell "Graphics Processing Cluster" heißt, nennt sich bei AMD "Shader Engine" und beherbergt jeweils verschiedene Recheneinheiten. Jede Shader Engine (kurz SE) beinhaltet einen Geometry Processor (u.a. für Tesselation-Leistung entscheidend) und einen Rasterizer sowie zwei Raster Back Ends, die wiederum aus vier ROPs bestehen. Außerdem sind die für die Rechenleistung maßgeblich verantwortlichen Compute Units (kurz CUs) Teil jeder SE und bestehen aus jeweils 64 ALUs (4x SIMD-16) sowie 4 TMUs. Des Weiteren wurden vier 64 Bit Speicher-Controller in den Chip integriert, so dass der verbaute GDDR5-Speicher über einen insgesamt 256 Bit breiten Bus angesprochen werden kann. Verglichen mit Tahiti musste Tonga zwei Raster Back Ends und eine Compute Unit je Shader Engine einbüßen.

Insgesamt vier SEs stehen auf einer Tonga-GPU zur Verfügung und bestehen bei einer Radeon R9 380 aus jeweils 7 CUs, was in Summe 1.792 ALUs ergibt – identisch zur R9 285. Des Weiteren liegt die Anzahl der TMUs bei 112 und die ROPs kommen in Summe auf 32 ihrer Art. Seitens der Taktraten liegt die R9 380 bei einer Maximalfrequenz von 970 MHz, was verglichen mit 918 MHz der R9 285 einer ordentlichen Steigerung entspricht – die theoretische Rechenleistung beträgt somit 3.477 GFLOPS (SP). Für das Erreichen der spezifizierten 970 MHz gilt es wie schon bei den Vorgängermodellen bestimmte Temperature- und Power-Targets zu erfüllen. Sapphire hat bei der Sapphire Radeon R9 380 Nitro den maximal möglichen Takt auf 985 MHz angehoben und möchte so ein wenig Mehrleistung aus der GPU kitzeln. Eine gegenüber der Referenzkarte überarbeitete Kühlung namens Dual-X soll das Erreichen des spezifizierten Maximaltakts sicherstellen. Hinzu kommt IFC-II, eine intelligente Lüftersteuerung in verbesserter Version (Intelligent Fan Control II), die die Lüfter bei geringer Belastung ausschaltet und so einen geräuschlosen Betrieb ermöglicht. Auch langlebige Kondensatoren und Black Diamond Chokes tragen nach Herstellerangaben zu gleichbleibend hohen Leistung und Zuverlässigkeit bei. Außerdem kommt die Nitro-Karte mit Dual-BIOS, um zwischen einem Legacy- und dem neuen UEFI-BIOS umschalten zu können (Schalter an der Seite der Karte).

Zwei Slots in der Bauhöhe genügen auch der neuen Kühlung.

Zwei Slots in der Bauhöhe genügen auch der neuen Kühlung.

Die Speicheranbindung wurde auf insgesamt vier einzelne Speichercontroller aufgeteilt, die jeweils ein 64 Bit breites Interface beinhalten. Damit ergibt sich in Summe ein 256 Bit Speicherinterface, das im Referenzdesign mit 2 oder 4 GB GDDR5-Speicher bestückt wird. Der Speichertakt der 2 GB Ausführung beträgt 2.750 MHz, 2.850 MHz gelten für alle 4 GB Modelle. Sapphire hat auch den Speichertakt angehoben und taktet die Radeon R9 380 Nitro mit 2.900 MHz. Wie sich die Karte in Sachen Temperatur- und Geräuschentwicklung schlägt, klären wir ab Seite 15 des Artikels.

Die typische Leistungsaufnahme gibt AMD mit 190 Watt an, was auch der Angabe der R9 285 entspricht. Daher wird die AMD-Referenzkarte und auch das im Test befindliche Sapphire-Modell mit zwei 6-Pin-PCIe-Anschlüssen ausgestattet.

Am Slot-Bracket zeigt sich die Karte erwartet anschlussfreudig.

Am Slot-Bracket zeigt sich die Karte erwartet anschlussfreudig.

Das Arbeiten und Spielen mit mehreren Bildschirmen wird immer populärer und so bietet natürlich auch die neue Generation entsprechende Unterstützung per AMD Eyefinity. Mit einem DIV-D- und einem DVI-I-Anschluss (max. 2560 x 1600) sowie je einem HDMI-Port und DisplayPort (1.2) ist eine Konfiguration mit mehreren Monitoren problemlos möglich. DirectX 12.0 wird von der Tonga-GPU vollständig (volles Feature-Level) unterstützt, ebenso auch TrueAudio. Tonga kommt außerdem mit einem überarbeiteten Unified Video Decoder (UVD 5), AMD FreeSync sowie einer Video Codec Engine (VCE 3) daher, die allgemein in der Performance zugelegt hat. Das Setup von Multi-GPU-Systemen ist bei Teilen der R9-Serie noch einfacher geworden, denn die interne Kommunikation der Karten läuft vollständig über den PCIe-Bus, so dass keine zusätzliche CrossFire-Bridge installiert werden muss. Der CrossFire-Betrieb ohne Brücke (XDMA) wird bei der R9 380 für bis zu vier Karten unterstützt, was bei R9 285 noch auf zwei limitiert war. Folgend die technischen Eckdaten im Überblick und im Vergleich zur GeForce GTX 960 aus dem Hause Nvidia sowie der R9 285.

Hersteller AMD AMD Nvidia
Produktbezeichnung Radeon R9 380 Radeon R9 285 GeForce GTX 960
Logo
Grafikchip Tonga Tonga GM206
Fertigung 28 nm 28 nm 28 nm
Transistoren ca. 5,0 Mrd. ca. 5,0 Mrd. ca. 2,94 Mrd.
Shader-Einheiten 1.792 (1D) 1.792 (1D) 1.024 (1D)
Basis-Frequenz - - 1.127 MHz
Boost-Frequenz 970 MHz 918 MHz 1.178 MHz
SP-Rechenleistung 3.477 GFLOPS 3.290 GFLOPS 2.308 GFLOPS (Basis)
2.413 GFLOPS (Boost)
ROPs 32 32 32
TMUs 112 112 64
Pixelfüllrate 31.040 MPixel/s 29.376 MPixel/s 36.064 MPixel/s (Basis)
37.696 MPixel/s (Boost)
Texelfüllrate 108.640 MTexel/s 102.816 MTexel/s 72.128 MPixel/s (Basis)
75.392 MPixel/s (Boost)
Speicher-Frequenz 2.750 MHz
2.850 MHz
2.750 MHz 3.504 MHz
Speicher-Interface 256 Bit 256 Bit 128 Bit
Speicher-Bandbreite 176.000 MB/s
182.400 MB/s
176.000 MB/s 112.128 MB/s
Speicher-Volumen 2 GB GDDR5
4 GB GDDR5
2 GB GDDR5 2 GB GDDR5
DirectX (vollständig) 12.0 12.0 12.1
Multi-GPU 4-Way CrossFireX 2-Way CrossFireX 2-Way SLI
Stromsparmechanismus √ (ZeroCore) √ (ZeroCore)
Leistungsaufnahme typ. 190 Watt 190 Watt -
Leistungsaufnahme max. - - 120 Watt
Die Rückseite der Sapphire Radeon R9 380 Nitro Grafikkarte.

Die Rückseite der Sapphire Radeon R9 380 Nitro Grafikkarte.

Autor: Stefan Boller, Patrick von Brunn
ASUS ROG Strix GeForce RTX 4090 OC im Test
ASUS ROG Strix GeForce RTX 4090 OC im Test
ASUS ROG Strix RTX 4090 OC

Mit der ROG Strix RTX 4090 bietet ASUS eine ab Werk übertaktete GeForce an, die mithilfe einer wuchtigen Quad-Slot-Kühlung eine überragende Kühlleistung bietet. Wir haben den Boliden in der Praxis ausgiebig begutachtet.

Sapphire NITRO+ RX 7900 GRE im Test
Sapphire NITRO+ RX 7900 GRE im Test
NITRO+ RX 7900 GRE

Mit der AMD Radeon RX 7900 GRE hat eine bisher als OEM-Variante vertriebene GPU nun den offiziellen Weg in den Handel gefallen. Passend zum Marktstart haben wir uns die Sapphire NITRO+ RX 7900 GRE im Test angesehen.

KFA2 GeForce RTX 4080 SUPER SG im Test
KFA2 GeForce RTX 4080 SUPER SG im Test
KFA2 RTX 4080 SUPER SG

Die GeForce RTX 4080 SUPER SG von KFA2 kommt mit 1-Click OC und einer wuchtigen Kühlung im Quad-Slot-Design inkl. RGB-Beleuchtung. Wir haben uns den Boliden im Praxistest ausführlich zur Brust genommen.

ZOTAC RTX 4070 Ti SUPER Trinity Black Test
ZOTAC RTX 4070 Ti SUPER Trinity Black Test
Trinity Black Edition

ZOTAC bietet mit der Trinity Black Edition ein Custom-Design der GeForce RTX 4070 Ti SUPER an, die erst kürzlich von Nvidia vorgestellt wurde. Wie sich die extravagante Grafikkarte im Test schlägt, lesen Sie hier in unserem Review.